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• Analytical test methods are being developed during 
development of a new product

– Identification tests

– Impurities (quantitative and limit tests)

– Assays (quantitative tests for the active ingredient or 
other components of drug substance or drug product)

• Tests are used for

– Release and stability testing of the product

– In-process tests on intermediates

• Microbiological methods are used to test for the 
presence or occurrence of microorganisms in 
product, process, or environment

Introduction
Different test methods
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• Alternative rapid microbiological methods (RMMs) are 
developed to replace conventional growth-based methods

– Reduce time to result from ≥ 2 weeks to 0-5 days

– In-process controls, Root cause investigations, Release

– Improve lab efficiency

– Cost savings (e.g. when batch can be saved)

• Early detection of contaminations and reliable 
counting methods may save $millions/year

Introduction
Rapid Microbiological Methods (RMM)
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• The objective of validation is to demonstrate that the 
method is suitable for its intended purpose (ICH Q2(R1))

– Do we need a limit of detection of one? 

– What if a few organisms are not always counted? 

– Can we accept false positives? And how many? 

– How precisely should we determine the capability? 

– Should RMM be better than compendial?

• Microbiological guidelines EP 5.1.6 & USP <1223>

– Are not fully developed and aligned 

– Accuracy, precision, limit of detection (LOD), specificity

– Suggest that RMM should be equivalent or non-inferior 
to conventional method

Introduction
Validation
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• Validation RMMs more complex than analytical methods

– Living organisms, which may be sensitive to conditions

– Different species, which will respond differently

– Impossible to spike precisely – lack of ref standards

– False positives may mask false negatives for 
non-growth-based methods

• Performance cannot be observed directly from the results

• Statistics needed!

Introduction
Validation Issues
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• Ideal Microbiological Experiments:

– Repeated blank samples for specificity

– Repeated samples with one 
microorganism for detection limit

– Repeated samples with higher numbers
of microorganisms for accuracy

Introduction
Validation Issues
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• Real Microbiological Experiments:

Introduction
Validation Issues
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Non-inferiority according to USP <1223>
Approach 1
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Approach 1: Non-inferiority on positive rates

• Test 75-100 samples at a spike level for which 50-75% of 
samples is tested positively with compendial method

• Hypotheses: 𝐻0: 𝑝𝐴/𝑝𝐶 ≤ 𝑟0 versus 𝐻1: 𝑝𝐴/𝑝𝐶 > 𝑟0
– Non-inferiority margin: 𝑟0 = 0.8

• Reject 𝐻0 if (Farrington & Manning, 1990):

•
ො𝑝𝐴−𝑟0 ො𝑝𝐶

ෝ𝑤0

1/2 > 𝑧1−𝛼

– with Ƹ𝑝𝐴 and Ƹ𝑝𝐶 the proportions of positive samples for 
alternate and compendial method

– with ෝ𝑤0 the MLE of var( Ƹ𝑝𝐴 − 𝑟0 Ƹ𝑝𝐶) under 𝐻0



Non-inferiority according to USP <1223>
Approach 2
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Approach 2: Non-inferiority on most probable numbers (MPN)

• The MPN estimates or quantifies the number of organisms 
in a suspension based on qualitative (pos/neg) results 
of samples taken from (dilutions of) the suspension 
(Cochran, 1950)

• Hypotheses: 𝐻0: 𝜇𝐴 − 𝜇𝐶 ≤ log(𝑟0) vs. 𝐻1: 𝜇𝐴 − 𝜇𝐶 > log(𝑟0)

– with 𝜇𝐴 and 𝜇𝐶 the mean MPNs in log scale

• Use t-test for non-inferiority: reject 𝐻0 if the one-sided 
95% LCL for 𝜇𝐴 − 𝜇𝐶 exceeds log 𝑟0



• One suspension with 𝑁 organisms in volume 𝑉 mL

• For a test sample with volume 𝑣, the mean 
bacterial density per test sample is = 𝑣𝑁/𝑉

• The probability that it is contaminated is

𝑝 = 1 − exp −

• assuming the number of organisms in a
sample follows Poisson

• Hence, the MPN becomes

• ෠ = − log 1 − Ƹ𝑝 ,  ෡𝑁 = (𝑉/𝑣) ෠

• Does not exist if all samples positive

Non-inferiority according to USP <1223>
MPN using one dilution
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𝑁 organisms

Volume 𝑉

Test samples of volume 𝑣

Example:  ෠ = − log 1 − Τ4 6 = 1.1



• Multiple dilutions to ensure both pos and neg samples

• Usually 3 or 5 dilutions (10- or 2-fold) with 3 or 5 replicates

• For multiple dilutions, no closed-form expression exists

Non-inferiority according to USP <1223>
MPN using multiple dilutions
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1 mL

+9 mL

10-1

/10

𝑁 organisms

Volume 𝑉
= 𝑣𝑁/𝑉

1 mL

+9 mL

10-2

/100

1 mL

+9 mL

10-3

/1000

Example:

3,3,2 positive

෡𝑁 = 1100



Non-inferiority according to USP <1223>
Implicit assumptions
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Approach 2:

• Cochran, 1950: 

– The organisms are distributed randomly throughout the liquid. Thus 
the liquid is thoroughly mixed. 

– Each sample from the liquid, when incubated in the culture medium, 
is certain to exhibit growth whenever the sample contains one or 
more organisms. 

• Gartright & Blodgett, 1996:

– Random, unaggregated distribution of bacteria so that the number 
in a small unit follows Poisson

– Each tube is independent of the others

– Growth will ensue in a sterile tube with the introduction of one or 
more bacteria

• Implicitly assumes LOD=1 – What if this is not the case?



Non-inferiority according to USP <1223>
Implicit assumptions
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Approach 1:

• Non-inferiority claim would only hold for tested spike level

– What if spike was too high?

– What about other spikes?

• Binomial probabilities for all samples assumed to be same

– Due to spiking and sampling variability, samples have 
different detection probabilities

• Number of positive test samples depends not only on 
microbiological test method, but also on the numbers of 
organisms in samples

– Not controlled due to spiking and sampling variability



Statistical detection model
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• Need a model that separates

– Detection by the microbiological method

– Spike variability and sampling process

• Classification of a qualitative test result

• So we need to look at the conditional detection probabilities

True Number of Organisms
𝑋 = 0 𝑋 > 0
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Note: USP/EP define 

specificity as the ability 

to detect a range of 

organisms (=sensitivity)
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LOD

𝜋 𝑥 = 𝑃 𝑌 = 1|𝑋 = 𝑥



Statistical detection model
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• Binomial Mechanism (BM)

• 𝜋 𝑥 = 1 − 1 − 𝜃 𝑥

– Each organism has a probability 𝜃 to be detected

– This detection proportion is related to sensitivity/LOD

– Seems reasonable for growth-based methods

• Can be extended with a false positive rate 𝜂 for specificity
(IJzerman-Boon & Van den Heuvel, 2015)

• However, we do not know 𝑥, so we cannot estimate 𝜋 𝑥 , 
only the average over different samples



Statistical detection model
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• If true number of organisms 𝑋 is Poisson( ), then the 
marginal probability of a positive sample is

• 𝑝 = 1 − exp −𝜃

• The positive rates (USP1) estimate this marginal probability

• The MPN estimator (USP2) only estimates if 𝜃 = 1

• In general, only the product  = 𝜃 can be estimated

• Compare 2 methods with same and consider ratio ෠𝐴/෠𝐶

• Test for non-inferiority: one-sided 95% LCL for 𝜃𝐴/𝜃𝐶 > 𝑟0 or 
one-sided 95% LCL for log(𝐴) − log(𝐶) > log(𝑟0)



• Performance cannot be observed directly from results

True performance Observed

• Difference in detection proportions is much larger than the 
observed difference in expected positive rates

Statistical detection model
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

𝑥 = 𝑃 𝑌 = 1|𝑋 = 𝑥 = 1 − (1 − )𝑥 𝑝 = 𝑃 𝑌 = 1 = 1 − exp(− )



Simulations
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• Type I error (%) for a single dilution:

– USP1 (positive rates) vs. gMPN (generalized MPN)

– 1000 simulations

• USP1 on positive rates leads to highly inflated Type I error

𝜃1, 𝜃2 Design

𝑛 = 200

𝑟0 = 0.8

USP1 gMPN

0.64, 0.8 1x200 0.5

1.0

1.5

2.0

2.5

3.0

29.0

48.5    

68.8

87.8    

97.3

99.9

4.6

5.6   

4.5

5.3   

4.6

4.7



Simulations
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• Power (%) for the 3 approaches:

– USP1 (positive rates) vs. gMPN for single dilution

– USP2 (t-test on MPNs) vs. gMPN for multiple dilutions

𝜃1, 𝜃2 Design

𝑛~200

𝑟0 = 0.8 𝑟0 = 0.7

USP1 USP2 gMPN USP1 USP2 gMPN

0.8, 0.8 1x200 0.5

1.0

1.5

2.0

2.5

3.0

78.1

95.5

99.5

100.0

100.0

100.0

35.8

46.3

55.9

55.9

51.7

49.7

93.1

99.9

100.0

100.0

100.0

100.0

64.8

81.4

84.0

87.2

85.6

84.0

0.8, 0.8 3x3 x22 4,2,1 37.8 49.7 67.7 82.3

3x5 x13 4,2,1 44.0 49.2 74.1 82.2



Simulations
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• Approach 1 should not be used

– Concludes non-inferiority too often, even more when spike goes up

• Approach 2 suitable, but can be improved:

– Single dilution with ~2 has optimal power

If multiple dilutions are used:

– Choose smaller dilution factor to stay close to the optimum

– Replace t-test by generalized MPN analysis

• More power, less risk of failed experiments

– Use 200 instead of 100 samples, and/or margin 0.7 instead of 0.8

• Generalized MPN approach recommended



Conclusions
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• Validation should consider the detection model 𝜋(𝑥)
– Not recognized in guidelines

• Non-inferiority on positive rates (USP1) incorrect

– Also affected by spike level

– False positives could compensate for false negatives

• Non-inferiority on MPN (USP2) correct in binomial model, 
but not optimal: generalized MPN approach better

• More research needed for other detection models


