Validation of Rapid Microbiological Methods:

Statistical and Regulatory Challenges

E INVENTING FOR LIFE
Pieta |Jzerman-Boon

Center for Mathematical Sciences, MSD

AProp rietary

BMS-ANed & PSDM Fall meeting
23 Nov 2018, Wageningen



Content

Introduction

Non-inferiority for qualitative tests according to USP <1223>

Statistical model for detection of microorganisms

Simulations

Conclusions



A"’”“"

Introduction

Different test methods

« Analytical test methods are being developed during
development of a new product

— ldentification tests

— Impurities (quantitative and limit tests)

— Assays (quantitative tests for the active ingredient or

other components of drug substance or drug product)

« Tests are used for

— Release and stability testing of the product

— In-process tests on intermediates
* Microbiological methods are used to test for the

presence or occurrence of microorganisms in
product, process, or environment
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Introduction

Rapid Microbiological Methods (RMM)

 Alternative rapid microbiological methods (RMMs) are
developed to replace conventional growth-based methods

—

i«?‘. ./

— Reduce time to result from = 2 weeks to 0-5 days
— In-process controls, Root cause investigations, Release
— Improve lab efficiency

— Cost savings (e.g. when batch can be saved)
- Early detection of contaminations and reliable
counting methods may save $millions/year
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Introduction

Validation

« The objective of validation is to demonstrate that the
method is suitable for its intended purpose (ICH Q2(R1))

— Do we need a limit of detection of one?

— What if a few organisms are not always counted?
— Can we accept false positives? And how many?

— How precisely should we determine the capability?
— Should RMM be better than compendial?

* Microbiological guidelines EP 5.1.6 & USP <1223>
— Are not fully developed and aligned
— Accuracy, precision, limit of detection (LOD), specificity

— Suggest that RMM should be equivalent or non-inferior
to conventional method

¢ MSD
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Introduction

Validation Issues

« Validation RMMs more complex than analytical methods
— Living organisms, which may be sensitive to conditions
— Different species, which will respond differently
— Impossible to spike precisely — lack of ref standards

— False positives may mask false negatives for
non-growth-based methods

—>

- Performance cannot be observed directly from the results
e Statistics needed!



Introduction

Validation Issues

- Ideal Microbiological Experiments:
— Repeated blank samples for specificity

L] |:| O O O [] D‘I False positive rate

— Repeated samples with one
microorganism for detection limit

L & & B [ N |;|—>|False negative rate

— Repeated samples with higher numbers
of microorganisms for accuracy

|£T| |g| EI |g| |g| ................ |g| EI_I Bias — Spike 1

Quantitative Tests | Qualitative Tests

|§| |§| |§| |§| |§| ................ |§| |§| l|Bias—Spikem

Traditional statistical analysis methods can be

applied to the ideal microbiological experiment 6 MSD



Introduction

Validation Issues

 Real Microbiological Experiments:
Spike N
uncertai

Test samples Qualitative Quantitative
(volume v) Tests Tests

X1:5
E > Y1=1 Y1=4
W
/ . > Y2=O Y2=0

—_— X, =4
.' 2 > Y3=1 Y3=5

Dilution \. Am =2, Y, =1 Yy = 2

(volume 1)

True number of organisms X in test sample is
Binomial(N, v/V) or approximately Poisson(vN/V) e MSD
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Non-inferiority according to USP <1223>

Approach 1

Approach 1: Non-inferiority on positive rates

« Test 75-100 samples at a spike level for which 50-75% of
samples is tested positively with compendial method

* Hypotheses: Hy: pa/pc < 19 VErsus Hy:pa/pc > 1o
— Non-inferiority margin: r, = 0.8
* Reject H, If (Farrington & Manning, 1990):
Pa—Tobc
- 10/2 > Z1—q
Wo
— with p, and p. the proportions of positive samples for
alternate and compendial method

— with w, the MLE of var(p4 — rypc) under H,
A Qmsp
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Non-inferiority according to USP <1223>

Approach 2

Approach 2: Non-inferiority on most probable numbers (MPN)

- The MPN estimates or quantifies the number of organisms
In a suspension based on qualitative (pos/neg) results
of samples taken from (dilutions of) the suspension
(Cochran, 1950)

® HypOtheseS: H(): Ua — Uc < l()g('ro) VS. H]_: Ua — Uc > lOg(T'())
— with u, and u,. the mean MPNSs in log scale

« Use t-test for non-inferiority: reject H, if the one-sided
95% LCL for u, — u- exceeds log(ry)



Non-inferiority according to USP <1223>

MPN using one dilution

* One suspension with N organisms in volume V mL

* For a test sample with volume v, the mean
bacterial density per test sample isB = vN/V  y organisms

« The probability that it is contaminated is
p=1—-exp(—B)

assuming the number of organisms in a
sample follows Poisson

« Hence, the MPN becomes

B=—log(1-p), N=(/v)B EDEEEE

« Does not exist if all samples positive Test samples of volume v

Volume V

Example: @ = —log(l1 —4/6) = 1.1



Non-inferiority according to USP <1223>

MPN using multiple dilutions

« Multiple dilutions to ensure both pos and neg samples
« Usually 3 or 5 dilutions (10- or 2-fold) with 3 or 5 replicates
* For multiple dilutions, no closed-form expression exists

Example:
3,3,2 positive
= 1100

Volume V 101 102 103
= vN/V B/10 E/100 7/1000
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Non-inferiority according to USP <1223>

Implicit assumptions

Approach 2:

e Cochran, 1950:

— The organisms are distributed randomly throughout the liquid. Thus
the liquid is thoroughly mixed.

— Each sample from the liquid, when incubated in the culture medium,
IS certain to exhibit growth whenever the sample contains one or
more organisms.

« Gartright & Blodgett, 1996:

— Random, unaggregated distribution of bacteria so that the number
iIn a small unit follows Poisson

— Each tube is independent of the others

— Growth will ensue in a sterile tube with the introduction of one or
more bacteria

—>
« Implicitly assumes LOD=1 — What Iif this is not the case?
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APmp rief

Non-inferiority according to USP <1223>

Implicit assumptions

Approach 1:

* Non-inferiority claim would only hold for tested spike level
— What if spike was too high?
— What about other spikes?

« Binomial probabilities for all samples assumed to be same
— Due to spiking and sampling variability, samples have
different detection probabilities
=

* Number of positive test samples depends not only on
microbiological test method, but also on the numbers of
organisms in samples

— Not controlled due to spiking and sampling variabLL'lt

tary
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Statistical detection model

* Need a model that separates
— Detection by the microbiological method
— Spike variability and sampling process

 Classification of a qualitative test result
True Number of Organisms

X=0 X>0
=° o False Note: USP/EP define
@ : Specificity Negative specificity as the ability
x _ — to detect a range of
@ False Sensitivity: organisms (=sensitivity)
q) i
~ ~.| Positive LOD

« S0 we need to look at the conditional detection probabilities
n(x) =P(Y =1|X =x)



Statistical detection model

* Binomial Mechanism (BM)
n(x)=1—-(1—-86)*
— Each organism has a probability 6 to be detected
— This detection proportion is related to sensitivity/LOD
— Seems reasonable for growth-based methods

- Can be extended with a false positive rate n for specificity
(IJzerman-Boon & Van den Heuvel, 2015)

* However, we do not know x, so we cannot estimate mw(x),
only the average over different samples

AProprletary INVENTING FOR LIFE



Statistical detection model

 If true number of organisms X is Poisson(&), then the
marginal probability of a positive sample is

p =1 — exp(—60)
« The positive rates (USP1) estimate this marginal probability
« The MPN estimator (USP2) only estimates 2 if 6 = 1
* In general, only the product £ = 6 can be estimated
D>
- Compare 2 methods with same & and consider ratio &,/¢,

* Test for non-inferiority: one-sided 95% LCL for 8,/6, > ry Or
one-sided 95% LCL for log(§,) — log(&) > log(ry)

A ¢QMSD
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Statistical detection model

« Performance cannot be observed directly from results

True performance Observed
Blx) =P =1X=x)=1-(1 —-@)* p=P =1) =1 — exp(—BER)
1.0 - 1.0
()
_Bs -~
= 08 S os
g =
O 0.6] % 0.6
o o
5 =
_% 0.4 3 0.4
(&
2 02 ‘é’_ 0.2
= LL
0.04 . . ‘ . . . 0.04 . . ‘ . . .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Number of organisms Average number of organisms ).

==> Difference in detection proportions is much larger than the
observed difference in expected positive rates € MsD
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« Type | error (%) for a single dilution:
— USP1 (positive rates) vs. gMPN (generalized MPN)
— 1000 simulations

0, 6, Design o = 0.8
n =200 USP1 | gMPN
0.64,0.8 | 1x200 0.5 29.0 4.6
1.0 48.5 5.6
1.5 68.8 4.5
2.0 87.8 5.3
2.5 97.3 4.6
3.0 99.9 4.7

==> USP1 on positive rates leads to highly inflated Type I error

AProprletary : INVENTING FOR LIFE



* Power (%) for the 3 approaches:
— USP1 (positive rates) vs. gMPN for single dilution
— USP2 (t-test on MPNSs) vs. gMPN for multiple dilutions

AProp rietary

91, 92 DESIgn o = 0.8 o = 0.7
n~200 USP1 | USP2 | gMPN | USP1 | USP2 | gMPN
0.8,0.8| 1x200 | 05 | 781 35.8 93.1 64.8
10 | 955 46.3 99.9 81.4
15 | 995 55.9 | 100.0 84.0
2.0 | 100.0 55.9 | 100.0 87.2
25 | 100.0 51.7 | 100.0 85.6
3.0 | 100.0 49.7 | 100.0 84.0
0.8,0.8| 3x3x22 | 4,2,1 37.8 | 497 67.7 | 823
3x5 x13 | 4,2,1 440 | 492 741 | 822
6 MﬁRING FOR LIFE




« Approach 1 should not be used
— Concludes non-inferiority too often, even more when spike goes up

« Approach 2 suitable, but can be improved:
— Single dilution with B~2 has optimal power

If multiple dilutions are used:
— Choose smalller dilution factor to stay close to the optimum

— Replace t-test by generalized MPN analysis
- More power, less risk of failed experiments

— Use 200 instead of 100 samples, and/or margin 0.7 instead of 0.8

* Generalized MPN approach recommended



Conclusions

Validation should consider the detection model (x)
— Not recognized in guidelines

* Non-inferiority on positive rates (USP1) incorrect
— Also affected by spike level
— False positives could compensate for false negatives

* Non-inferiority on MPN (USP2) correct in binomial model,
but not optimal: generalized MPN approach better

« More research needed for other detection models



